
Received February 27, 2020, accepted March 18, 2020, date of publication March 24, 2020, date of current version April 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982932

An Autonomous Spectrum Management
Scheme for Unmanned Aerial Vehicle
Networks in Disaster Relief Operations
ALIREZA SHAMSOSHOARA 1, FATEMEH AFGHAH 1, ABOLFAZL RAZI 1,
SAJAD MOUSAVI1, JONATHAN ASHDOWN 2, AND KURT TURK2
1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
2Air Force Research Laboratory, Rome, NY 13441, USA

Corresponding author: Alireza Shamsoshoara (alireza_shamsoshoara@nau.edu)

The work of Fatemeh Afghah, Jonathan Ashdown, and Kurt Turk was supported by the US Air Force Research Lab.

ABSTRACT This paper studies the problem of spectrum shortage in an unmanned aerial vehicle (UAV)
network during critical missions such as wildfire monitoring, search and rescue, and disaster monitoring.
Such applications involve a high demand for high-throughput data transmissions such as real-time video-
, image-, and voice- streaming where the assigned spectrum to the UAV network may not be adequate
to provide the desired Quality of Service (QoS). In these scenarios, the aerial network can borrow an
additional spectrum from the available terrestrial networks in trade of a relaying service for them. We
propose a spectrum sharing model in which the UAVs are grouped into two classes of relaying UAVs that
service the spectrum owner and the sensing UAVs that perform the disaster relief mission using the obtained
spectrum. The operation of the UAV network is managed by a hierarchical mechanism in which a central
controller assigns the tasks of the UAVs based on their resources and determine their operation region based
on the level of priority of impacted areas and then the UAVs autonomously fine-tune their position using
a model-free reinforcement learning algorithm to maximize the individual throughput and prolong their
lifetime. We analyze the performance and the convergence for the proposed method analytically and with
extensive simulations in different scenarios.

INDEX TERMS Autonomous UAV networks, multi-agent systems, Q-learning, reinforcement learning,
spectrum sharing.

I. INTRODUCTION
Several unique features of unmanned aerial vehicles (UAVs)
including low cost and fast deployment, wide field of view,
3-dimensional movements, and aerial and terrestrial mapping
make them very attractive for various applications such as dis-
aster relief, military missions, wildfire monitoring, precision
agriculture, and surveillance [1]–[5]. The operation of drones
in such missions fully depends on the performance of the
communication network among the drones and between the
drones and the ground station as discussed in [6]. Unmanned
Aerial Systems (UASs) demonstrate high capabilities in dis-
aster relief operations, search-and-rescue (SAR), and aerial
surveillance, however there are still several challenges toward
full-scale implementation of drones in these applications [7].
One key challenge related to the application of drones in
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such highly-sensitive missions is to guarantee the existence
of a low-latency high-throughput communication network.
In certain applications namely military missions and disaster
relief operations, there is a demand for high bandwidth com-
munications to transmit sensed information to a data fusion
center. Usually, the sensed information can be in the form of
real-time video or high quality aerial images. The required
data transmission rate depends on the dynamicity level of
the operation field. For instance, the mission may involve
short-term periods of time in which a very large bandwidth is
required for real-time streaming that was not foreseen in the
original spectrum allocation planning. In such cases, the pre-
allocated spectrum to the UAV network may not be adequate
to meet this demand. This need calls for new solutions to
provide an additional spectrum for the fleet of UAVs during
such critical missions.

In this study, we propose a solution to provide the required
additional spectrum for the UAV network by considering the
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network throughput and lifetime. In common UAVs’ oper-
ation fields in rural or urban settings, there usually exists a
terrestrial network which owns the licensed spectrum also
known as the primary network (PN). This primary network
can occasionally experience a low quality of communication
due to shadowing, fading, or even the direct communication
may be compromised because of the damages to infrastruc-
ture caused by natural disasters such as wildfires and earth-
quakes. Hence, utilizing a relay node can be beneficial for
the primary or the terrestrial network to forward its messages
to its legitimate receiver or improve its transmission qual-
ity by taking advantage of cooperative communication. For
instance, a low-power IoT node in a remote area can benefit
from a relay UAVwhen the direct communication to a distant
destination requires a high transmission power. Our proposed
spectrum sharing model exploits this opportunity to provide
the additional required spectrum for theUAVnetworks during
critical missions. In this model, one UAV serves as an aerial
relay for the primary network in exchange for the required
spectrum access that is borrowed for other UAVs in the net-
work to complete theirmission. Cooperative spectrum leasing
models, also known as property-right models, in which the
primary user as the owner of the spectrum leases a portion
of its spectrum to the secondary users in exchange for some
profit have been studied in several works [8]–[10]. In these
models, the primary network selects the appropriate relay
nodes and determines an optimal time allocation strategy
for spectrum access to maximize its own benefits. However,
such unilateral spectrum leasingmodels are not appropriate to
provide the extra demanded spectrum for the UAV networks
during the critical missions as the spectrum sharing strategies
are solely determined by the PU.

This paper investigates a disaster relief scenario where a
fleet of UAVs collect imagery data (e.g., real-time video)
and transmit the data to an emergency center. We develop
a hierarchical cooperative spectrum sharing model for the
UAVs to secure additional spectrum access from other avail-
able network. In this model, the task of the UAVs and the
most appropriate region of operation for them is assigned by
a central controller. This approach divides the grid surface
into multiple regions and the controller unit determines the
operation region of each UAV to optimize the throughput
and maximize the network lifetime considering the residual
energy of each agent. The controller takes into account the
level of system’s dynamicity in terms of several factors such
as the variations in the environment conditions due to the
disaster or the primary’s location to re-initiate the region
assignment for UAVs if needed. Next, the UAVs perform
a learning technique to find their optimal positions within
their operation cell in a distributed manner. The number of
UAVs is chosen based on the impacted regions. Moreover,
we assumed that the task of drone is to monitor an individual
region to gather video data from the impacted area and send
them to the emergency center. We assumed that, we have
enough drones to map them to the impacted areas and only
one drone operates in a region. The UAVs are assumed to

be autonomous in the sense that they can find their optimal
path and location in a self-directed manner. They consider
different factors such as the residual energy, position of the
transmitter and the receiver and the throughput rate. A proof
of convergence is provided along with simulation results to
show the system performance in terms of throughput and
lifetime maximization with minimizing the number of steps.

The contribution of this work is to develop a practical
model for spectrum sharing in high-priority critical missions
that can be locally managed by the users without the need for
developing new regulations. The proposed hybrid approach
utilizes both centralized and distributed techniques to find the
best solution for spectrum sharing and location optimization
in a reasonable amount of time. The solution guarantees
the optimum throughput and lifetime for both primary and
secondary (i.e., UAV) networks. We like to note that the
centralized decision making is not performed constantly but
as needed depending on the level of variations in the system
status. Hence, the center is not considered as a bottleneck
for the system performance. Moreover, this hybrid solution
can enable the spectrum sharing in scenarios where the cen-
tral controller (i.e., the emergency center) does not have a
real-time observation of the environment, hence it can assign
the UAVs to the high-priority regions and then UAVs can take
into account their real-time observations of the network in
order to determine their optimum position within the opera-
tion region assigned to them by the center. The center first
assigns the UAVs to regions not the exact location or the
cell inside the region. We assumed that center cannot fully
observe the impacted regions. Therefore, the center will only
determine the operation region for the UAVs based on flight
distance and the residual energy of the battery. The model
is scalable in the sense that adding or removing the UAVs
does not impact the performance of other UAVs as they work
independently. To the best of our knowledge, this work is one
of the first ones to address the problem of spectrum shortage
for UAV networks during critical missions.

The rest of the paper is organized as follows. Section II
studies the related work regarding spectrum management
in UAV networks. Section III discusses the system model,
assumptions and formulation details. In Section IV, we pro-
pose two search algorithms from the emergency center view,
then introduce a multi-agent Q-learning algorithm and ana-
lyze its convergence. Section V presents the simulation
results and discusses the performance of the proposed meth-
ods in different settings. Finally, we conclude the study and
give some future directions in Section VI.

II. RELATED WORK
While the spectrum scarcity will be a serious challenge in
UAV networks given the increasing number of UAVs and
the requirements of advanced wireless services, the problem
of spectrum management in these networks has been barely
investigated so far. mmWave communication has been dis-
cussed as an option for payload communications of UAVs as
a part of 5G, but the technology is not widely available yet.
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Moreover, the mmWave communication is impacted by high
propagation path loss, thereby, it requires the UAVs to be
equipped with high directional antennas to avoid blockage
zones and maintain a LOS communication. First, we pro-
vide a brief review of some recent works focusing on the
trajectory planning and deployment optimization in UAV net-
works based on the communication between the ground users
and the UAVs. The authors in [11] considered a UAV-aided
data collection scenario and developed a mechanism to opti-
mize the trajectory, altitude, speed, and data links with the
ground users to reduce the mission time of data collection
from the ground users. Two approaches of segment-based
trajectory optimization algorithm (STOA) and group-based
trajectory optimization algorithm (GTOA) are developed to
solve this optimization problem. In other works [12], [13],
the authors considered a disaster relief problem, where the
UAVs are used as the base stations to enhance the com-
munication coverage for the ground users. The authors pro-
posed two approaches to solve this problem. The first one
is a centralized method to find the minimum number of
required UAVs to meet the requirements for the ground users’
coverage knowing the exact location of the ground users.
The second solution is a distributed method that works for a
given number of UAVs with no global information about the
ground users. In this method, the UAVs autonomously control
their motion considering the effect of virtual forces while
they maintain their air-to-air communication and provide the
required coverage for the ground users. In [14], the problem
of spectrum allocation based on cluster formation in a cogni-
tive IoT system is studied. The authors solved the optimiza-
tion problem for the cluster size while the method aimed to
maximize the formulated utility function and minimize the
communication delay.

The majority of recent works for the application of UAV
networks during disaster situations focus on enhancing the
communication coverage for terrestrial networks using drone
as temporary base stations, when the communication infras-
tructure is damaged. In [15], a disaster scenario is considered
where the drones as the 0th responders fly to the damaged
regions before the first responders arrive at the disaster
location and provide communication service to the victims.
The optimal localization of the drones is determined in
two phases. During the first step, a genetic algorithm (GA)
method is used based on some available information from
the past to initialize the location of drones. The second
phase includes adapting the drones to the real-time conditions
based on a local search algorithm such as hill climbing
algorithm (HCA). The authors in [16] addressed an NP-hard
problem of UAV network deployment to find the optimal
coverage of ground users. In this paper, a multi-layout
multi-subpopulation genetic algorithm is developed to find
the best location of the UAVs considering the redundancy,
fault tolerance, and the coverage. They compared their pro-
posed method with traditional GA, HCA, and particle swarm
optimization (PSO).

The few existing works related to spectrum sharing with
drones mainly focused on the coexistence of UAV networks
with cellular networks and adopted common notions of spec-
trum sharing such as interweave method to let the UAVs
opportunistically access the spectrum holes of other com-
munication systems, or the underlay method to allow the
UAVs to utilize the spectrum of other systems while main-
taining a low interference level [17]–[25]. The spectrum sens-
ing method is not an ideal option noting the considerable
energy consumption involved in searching a wide range of
frequencies. More importantly, the spectrum holes are often
sparse and appear on different frequencies, therefore they
cannot offer continuous communication for the UAV system
or require frequent changes of the operating frequency. The
spectrum sharing techniques based on databases control (e.g.,
TVwhite space) only allow a low level of transmission power
for unlicensed users, and allocate a wide and static protection
zone around the incumbents. One common drawback of these
conventional spectrum sharing methods is that the spectrum
owners are oblivious to the presence of the devices seeking
for spectrum, but a dynamic and efficient practical spectrum
sharing model cannot be implemented unless different users
including the spectrum owners and the ones looking for spec-
trum interactively cooperate with one another.

A primary model for cooperative spectrum sharing in UAV
networks where the UAVs are divided into two clusters of
sensing and relaying UAVs is proposed in [26]. In this model,
the UAVs are assumed to be located in fixed positions with
nomovement and amulti-agent reinforcement learning-based
solution was developed to find the best task allocation for
each UAV in a distributed manner. While this solution can
be applicable to scenarios where the communication among
the UAVs is not available or reliable, such fully distributed
approach for the task allocation with no message exchange
among the agents does not guarantee an optimum outcome.
In [27], the problem of cooperative spectrum sharing between
a UAV network and a terrestrial network was considered,
where a fully centralized approach is proposed serving for
both task allocation between the sensing and relaying UAVs,
and trajectory optimization. The authors assumed that the
emergency center has full control over the UAVs in terms of
the task assignment and movement. This problem was solved
using a ‘‘team Q-learning’’ algorithm for a multi-UAV sce-
nario. Although the proposed method is able to find the best
solution considering the UAVs’ locations and assigned tasks;
however, it takes a considerable amount of time for the learner
to get experience in large grids. Therefore, this centralized
model is not scalable and it also relies on a full real-time
knowledge of the central controller about the network and the
UAVs’ status.

In this paper, we propose a hierarchical joint task allo-
cation and path planning method that offers an scalable
and reliable solution for cooperative spectrum sharing for
UAV networks. In this model, first the emergency center
determines the operation region and the proper task of each
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UAV using a search algorithm or a bipartite graph matching
method [28], [29]. Then, the UAVs determine their optimum
location within their operation region given their real-time
observation of their environment. The UAV coordination for
all agents is performed using Reinforcement Learning (RL) to
achieve a common goal. In fact, by using the hybrid approach,
the nature of the problem which was a Multi Agent RL is
simplified to several single agent RL sub-problems.

III. SYSTEM MODEL
Let us assume a fleet of N autonomous UAVs with the
mission of transmitting high data rate surveillance data
such as video or images to a pre-defined emergency center.
We assume that all UAVs are autonomous in a way that they
can control their path in their region and determine their
optimal location autonomously. The emergency center can be
considered in a form of a ground station or a High Altitude
Platform (HAP) in a fixed location. This emergency center
has a prior knowledge about the impacted areas and their
level of priority, but it may not necessarily have a real-time
observation of the operation field.

It is assumed that there exists a licensed pair of terrestrial
transmitter-receiver willing to share their spectrum with the
UAV network as they suffer from a low quality of commu-
nication or they are interested to improve the communication
quality through relaying service by the UAVs.We assume that
the information related to the availability and location of such
primary user is made available to the central controller. This
information can be either released by the cellular network
or the UAVs can gather the required information about the
location of the primary users which experience a low quality
of service from their network. In [30], a Bayesian approach
is developed to localize the ground users using their received
signal strength indicator (RSSI). A similar approach can be
utilized in our model to locate the primary users which are in
need to receive a better quality of service through spectrum
leasing with the relaying UAVs. For the sake of simplicity,
we assume that the primary’s transmitter and receiver are too
far from each other that the direct communication is not fea-
sible or efficient for them [31]–[33]. Hence, they need a relay
to forward their messages for them. We should note that the
proposed spectrum sharingmethod can be also utilized in sce-
narios where the direct link between the primary’s transmitter
and receiver exists but the PU takes part in leasing its spec-
trum in exchange for diversity gain using cooperative relaying
methods. The pair of PU’s transmitter and receiver are located
in a fixed location on the ground and the UAVs (the secondary
users) are assumed to hover in a fixed altitude during their
mission. The proposed model can provide a spectrum sharing
solution between the drones and any terrestrial users which
operate on a frequency range that is supported by the drones.
However, noting the wide-area coverage, and security of
mobile networks, the cellular networks are proven to be the
most reliable choice to serve the UAV networks, in particular
during critical missions [34]. Therefore, in this paper we con-
sider the ground users as LTE users. We like to note that the

proposed model is different from the current trend of coex-
istence of UAV networks with the LTE network, where the
drones are served by the side lobes of LTE base station anten-
nas. During the disaster situations, it is very likely that the
cellular base stations may be damaged. Moreover, the inter-
ference caused by the drone communications to the cellular
networks needs to be further investigated. In our model,
we propose a solution that the LTE users intentionally lease
a portion of their time access to their spectrum to the UAV
networks, in exchange for cooperative relaying from these
flying relays when the local LTE base stations are damaged.

It is assumed that the UAVs are provided with a dedicated
bandwidth for Control and Non-Payload Communication
(CNPC) to exchange signaling and controlling information
and also with a limited bandwidth for payload commu-
nications which may not be adequate to deliver real-time
transmission of high-resolution data such as video and image
during disaster relief operations. Therefore, the UAV network
may require additional temporary spectrum access. To meet
this demand, one UAV in the network is selected by the
emergency center to act as an aerial relay for the terrestrial
network, while the rest of the UAVs can take advantage of the
spectrum access provided by the primary network to transmit
their collected information to the emergency center. The PU
grants half of its time of spectrum access to the UAV network
and in exchange one selected UAV assists the PU to deliver its
packet to the legitimate receiver. In summary, the UAVs can
be categorized into two sets of sensing and relaying UAVs.
One UAV is selected as a relay and N − 1 operate as the
sensing UAVs.

We consider a hybrid scheme consisting of both the cen-
tralized and autonomous control scenario in which the task
of the UAVs is determined by the emergency center while
they have the capability to decide for their actions in terms
of the mobility to maximize their throughput and lifetime.
Thus, the controller does not require continuous updates on
the environment status to determine the real-time location of
the UAVs, rather it assigns the sensing UAVs to high-priority
regions based on its prior knowledge of the environment in
the beginning of the mission. Then it revises this allocation
as needed if the level of dynamicity such as PU’s location or
the fire’s growth exceeds some pre-defined threshold.

Figure 1 demonstrates a sample scenario with three sensing
and one relay UAVs. The UAVs are assumed to be located
in a plane (not the emergency center). The emergency cen-
ter identifies the high priority impacted areas and clusters
these regions to multiple non-overlapping operation fields.
The size of operation regions depends on several factors
including the application type, the number and type of the
UAVs, the shape and dimensions of the impacted areas. The
emergency center assigns the UAVs to the optimal operation
field for them based on the residual energy and number of
hops they have to fly to reach the intended region and then the
UAVs can fly in their operation region and find their optimum
location within their region by taking one of the actions of
{Up ,Down ,Left ,Right ,Stay}.
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FIGURE 1. A sample scheme of the proposed spectrum sharing between a UAV network and a terrestrial licensed network.
Those red lines demonstrate the clustering of the whole area after prioritizing the impacted area and also the size of each
region. The regions in the red lines are non-overlapped.

In each time slot, the channel state information (CSI)
between all the nodes in the network including the emergency
center, the ground users, and theUAVs is determined based on
the distance between the chosen source and destination fol-
lowed by a simple LoS model. The CSI parameters between
the PU and the relaying UAV follow the slow Rayleigh fading
and are available at the transmitter based on common channel
estimation techniques [35]–[37].

In this work, we defined the CSI parameters as follow:
hPT ,Ui expresses the CSI between the primary transmitter and
ith UAV, hUi,PR describes the channel between the i

th UAVand
the primary receiver, hUi,E carry the information for channel
between ith UAV and the emergency center. The noise of
all channels are modeled at the receiver side with normally
distributed symmetric complex values, Z ∼ CN (0, σ 2).
We assume that all nodes including the UAVs and the ground
users have a constant arbitrary value for the transmission
power. These arbitrary values are different for the UAVs,
the source, and the primary transmitter. While several works
such as [38]–[40] focused on optimizing the power consump-
tion, we consider a constant transmission power; however,
we address the energy consumption rate by minimizing the
number of movements in the plane and each region.

We consider half-duplex transmission for the primary net-
work. In the first half of the time slot, the primary transmitter

sends its packet to the relaying UAV and then the UAV for-
wards the packet to the primary receiver. The sensing UAVs
transmit the gathered information such as video or sensed
data to the emergency center during the second half of the
time slot. Figure 2 illustrates the time allocation between two
networks in each slot.

FIGURE 2. The allocation of each time slot between the relaying and
sensing tasks.

Different relaying schemes such as amplify and for-
ward (AF) and decode and forward (DF) can be utilized at
the relay UAV [41]–[44]. Here, we utilize the AF scheme,
hence the throughput rate for the primary user can be achieved
as [45]:

RPU =
1
2
log2(1+ PPT |hPT ,PR|

2

+
PPT |hPT ,Ui |

2 PUi |hUi,PR|
2

σ 2 + PPT |hPT ,Ui |2 + PUi |hUi,PR|2
), (1)

where the transmission power for the primary transmitter and
UAV i are denoted by PPT and PUi . Background noise power
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at the receiver is σ 2, and let i denote the index for the ith

(UAV). Due to the long distance between the PT and PR,
hPT ,PR is zero, hence we can eliminate this term from the
throughput rate (|hPT ,PR| ' 0).
The throughput for each sensing UAV can be calculated as

[46], [47]:

RSEi =
λi

2
log2(1+

PUi |hUi,E |
2

σ 2 ), (2)

where λi is the portion of time that is allocated to ith UAV
transmission considering the priority of its operation field.

The achievable rate at the emergency center,
RSE (Multi-UAV) can be obtained as

RSE (Multi-UAV) =
∑
i∈UE

RSEi

=

∑
i∈UE

λi

2
log2(1+

PUi |hUi,E |
2

σ 2 ), (3)

where UE = {E1,E2, . . .EN−1} denotes the sensing set.
In Figure 3, a sample case with (N − 1) sensing UAVs

and one relaying UAV is shown. Figure 3 shows channel state
information between different nodes in this scenario.

FIGURE 3. Channel state information for the relaying UAV and sensing
coalition.

IV. PROPOSED ALGORITHM
The proposed algorithm for spectrum sharing includes two
steps: (i) the search algorithm which picks the best region
for the primary network based on the throughput metric
and assigns UAVs to the prioritized regions and the primary
region to prolong the network lifetime, and (ii) the reinforce-
ment learning algorithm performed by the individual UAVs to

gain experience on the states and actions to decide movement
actions wisely and maximize the individual throughput and
lifetime. In the simulation results, we observed both indi-
vidual throughput and the network throughput which is the
summation of all UAVs’ throughput.

A. TASK ALLOCATION AND REGION ASSIGNMENT BY THE
EMERGENCY CENTER
We assume that at the beginning of each round of optimiza-
tion, the UAVs are located at random cells across the region
with different random initial energy. The emergency center
determines the number of regions in the grid-operation field
knowing the number and type of available UAVs. It also
takes into account its prior knowledge of the impacted field
to identify the high priority regions. After determining the
high-priority regions and their IDs, the emergency center
identifies a proper primary network within the operation field
and assigns the best relay UAV to the region close to the PU
in order to maximize the throughput rate of the PU. Selecting
the region for the relaying UAV depends on the Euclidean
distance between the region and the primary receiver using
the search algorithm described in (4).

UAVP = argmax
u∈U

f (u) := {u|u ∈ U : E(u)− d(u)9}, (4)

where, UAVP is the index of the chosen UAV to serve the
primary network, U is the set of all UAVs, E(u) is the initial
energy for UAV u, d(u) is the number of steps or hops
that UAV u should travel to reach the center of the primary
region, and 9 is the energy consumption rate per movement.
Finding the u guarantees the longest lifetime for the primary
network. After assigning the primary UAV to the primary
region, the UAV’s initial energy will be decreased due to the
flight distance.

Next, the emergency center chooses arbitrary number of
regions based on the disaster operation and the priorities for
the sensing area. To utilize all UAVs, we assume that the arbi-
trary number of regions is equal to number of sensing UAVs.
Afterward, it assigns the remaining UAVs to the high-priority
regions such that the residual energy after the flight distance
from the initial location to the region is maximized. The
emergency center makes a preference list including the sorted
indices of the regions for each UAV. Next, it allocates the
UAVs to the regions based on the preference value. If two or
more UAVs have the same preference value for one specific
region, then the emergency center assigns the UAV with
higher remaining energy to this region and allocates the sec-
ond UAV to its next preference region. Also, in case that two
or more UAVs have exactly the same preference values and
same amount of residual energy, the center assigns the UAVs
to regions by random because there is no difference between
these UAVs. Expression (5) shows the preference array for
the sensing UAV i:

RSi = argsort
r∈R

g(r) := {r|r ∈ R : Ei − di(r)9}, (5)
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FIGURE 4. An example for matching the UAVs to the high priority regions.

where, argsort
r∈R

g(r) is the function to order a list in a descend-

ing order and returns the index of those values, RSi is the
preferred regions for UAV i, R is the set of high-priority
regions for the secondary network. Ei is the initial energy for
UAV i at its first location. di(r) is the distance of UAV i from
its initial location to the region r .

Figure 4a shows a complete graph with the sensing UAVs
and the region centers as the vertices and the remaining
energy after the flight distance as the edges. Figure 4b shows
an example of the allocated UAVs to the regions based on the
preference regions in (5). This allocation mechanism guaran-
tees the longest lifetime for each UAV. Based on this ranking
criteria, the goal of region selection is to have an optimal
throughput rate and the purpose of theUAVallocation is to get
the longest lifetime for both networks considering the energy.
After allocating the UAVs to the regions, each UAV utilizes a
Q-learning algorithm to find the best cell in each region.

B. LOCATION OPTIMIZATION AT INDIVIDUAL UAVs USING
REINFORCEMENT LEARNING
In applications where training data-sets are available to learn
the optimal behavior, the artificial neural network-based
(ANN) approaches are commonly utilize to learn the opti-
mal solution. However, in applications such as our problem
that lack the required training data-sets or knowledge about
the optimal solution, reinforcement learning-based methods
can offer a trial-and-error approach to determine the solu-
tion. ANN-based methods are limited to the given training
data-sets for the optimal solution and the obtained solution
cannot be better than the provided samples. However, a key
advantage of the RL-based approaches is that the agent can
learn to behave better than an expert in the problem.

In this study, we break down the Multi-Agent Reinforce-
ment Learning (MARL) into several single RL sub-problems.

Each UAV is considered as a single agent which is indepen-
dent of other UAVs. Each UAV is connected to its region with
action and perception [48].

Based on the aforementioned system model in Section III,
each UAV operates in an individual region area with no inter-
action with other UAVs. The states, actions, and rewards are
exclusive for each UAV. Taking an action for a specific UAV
does not impact the state and reward for other UAVs. As a
result, a simple Q-learning is used to find the best location
for each UAV. Each UAV monitors its behavior and decides
based on its experience.

The decision making for each UAV is modeled by a Finite
Markov Decision Process (FMDP) framework to construct
the decision making in the discrete time stochastic control
process. Each UAV only observes its own state refers to its
location within its allocated region. Assume that S it ∈ S i
defines the state for the ith UAV at step t, S i is the set of
all states for UAV i. Taking an action such as ait ∈ Ai for ith

UAV changes its state from S it to S
i
t+1. Choosing an action for

each UAV defines its behavior which follows the policy π (S)
based on (6).

π (St ) = argmax
at∈A(S t )

π (St , at ), (6)

The default action set A includes four actions for move-
ment and one action for staying at the previous location
A = {↑ (0),↓ (1),← (2),→ (3),−(4)}. Depending on the
UAV’s location, some particular actions may be prohibited.
For instance, if the UAV is located on the region’s edge side,
taking an action which results to leave the region is prohib-
ited. Taking a new action and altering into a new state (St+1)
updates the reward value rt ∈ R in respect to (9). Following
the optimal policy based on (6) guarantees the action set

which results into expected reward maximizationE(
∞∑
t=0

γ trt ),
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where γ ∈ [0, 1) is the discount factor. Individual UAV forms
distinct MDP including a 4-tuple which can be shown as
(S,A,Pa, ra), where S is finite set of states for each UAV.
Since all the regions sizes are the same and the UAVs are
independent, all UAVs consider the same state set,A, a finite
action set which depends on the UAV’s location in the region.
Pa : St × A× St+1 → [0, 1] is the state probability function
which stands for the randomness in transition between the St
and St+1, ra : S × A× St+1→ R is the gained scalar reward
for an individual UAV if it takes an action a and changes
its state from St to St+1. This reward introduces the effect
of the immediate action. However, it does not interpret the
long-term effect of the action. Hence, the UAV needs to maxi-
mize the long-term reward. One approach is using the optimal
action-value function and computing that with the Q-learning
algorithm [49], [50] which satisfies the Bellman optimality
equation. All UAVs update their Q-values based on:

Q(St , at ) = (1− α)× Q(St , at )

+α[ra(St , St+1)+ γ max
a′∈A

Q(St+1, a′)], (7)

where, α ∈ (0, 1] is the learning rate for the agent.Q(St , at ) is
the action-value for the current state which depends on the α,
current reward, γ , and the max

a′∈A
Q(St+1, a′). Last term stands

for the maximum action-value among all values for the next
state St+1. While (7) defines the Q table and values for one
UAV, (8) introduces the updating matrix for all agents:
Q1(S

(1)
t , a(1)t )

Q2(S
(2)
t , a(2)t )
...

QN (S
(N )
t , a(N )

t )



=


1− α(1)

1− α(2)
...

1− α(N )

 ·

Q1(S

(1)
t , a(1)t )

Q2(S
(2)
t , a(2)t )
...

QN (S
(N )
t , a(N )

t )

+

α(1)

α(2)

...

α(N )



·



r (1)a (S(1)t , S(1)t+1)+ γ max
a′(1)∈A(1)

Q(S(1)t+1, a
′(1))

r (2)a (S(2)t , S(2)t+1)+ γ max
a′(2)∈A(2)

Q(S(2)t+1, a
′(2))

...

r (N )
a (S(N )

t , S(N )
t+1)+ γ max

a′(N )∈A(N )
Q(S(N )

t+1, a
′(N ))


, (8)

where N is the number of agents (UAVs), also we assumed
that all UAVs have the same learning rate and discount factor.
The Q-tables are distinct for each UAV and the UAVs take
actions simultaneously.

To define the reward function for the agents based on their
actions in the previous time slots, we assume that both the
primary receiver and emergency center report their received
throughput to the UAVs. Since the goal of our model is to
maximize the throughput, network lifetime, and minimize the
energy consumption, the reward function consists of both
the gained throughput and remaining battery of the node.
The reward function compares the last two consecutive

throughput rates and remaining energy to give an award to
UAVs. Since the UAVs are located in different regions, their
reward functions are independent of each other and there is
no correlation between them. (9) defines the reward function
for each UAV:

Reward(i)

=

β1 if (R(t) > R(t − 1)) and (E(t − 1)− E(t) = 9)
β2 if (R(t) = R(t − 1)) and (E(t − 1)− E(t) = ψ)
β3 if (R(t) < R(t − 1)) and (E(t − 1)− E(t) = 9),

(9)

where, R(t) is the throughput rate at timeslot t , β1, β2, and
β3 are rewards based on the utility and remaining energy
values. i denotes the index for ith UAV. 9 is the energy
consumption rate when a UAV changes its location and
performs data transmission. ψ is the energy consumption
rate when a UAV stays at its location and performs data
transmission. We also assume that the energy consumption
due to the UAV’s mobility is more than the energy used for
data transmission, as it is usually the case in UAV networks.
The reward is obtained based on the throughput rate and since
the throughput depends on the distance between any source
and destination, the UAVs’ goals are to find a proper location
for themselves in each region to maximize their throughput
and minimize the energy consumption.

In each step, the UAVs are awarded with different reward
values based on (9) which follows three possible options:
first, the UAV changes its position and it improves the
throughput rate too. But it costs energy to change the cell in
the region. In this case, the UAV earns β1 as a positive reward.
Second, the UAV stays at its position and keeps its previous
throughput rate and saves its energy, in this case, the UAV
is granted with β2 as the reward. Third, the UAV changes its
location and receives less throughput rate and it also looses
its energy because of the movement. In this case, the UAV is
punished with β3 as a negative value.
For the action selection process, we implement the

ε-greedy exploration for all UAVs with the constant ε. Hence,
each UAV chooses a random action with the probability
of ε and it chooses the best action with the probability
of 1 − ε to find the best action based on updated values
in the Q-table. We like to note that in team Q-learning,
a single learner decides for all agents in a random or a greedy
manner. However, in multi-agents such as Nash Q-learning
or the method in this paper, the UAVs act independently. For
instance, some UAVs behave randomly while others choose
greedy actions [51]. The utilized action selection method is
shown in 10:

a(i)t :

random Actions, rand(i) < ε,

argmax
a(i)

Qi(S
(i)
t ,A), o/w, (10)

where i ∈ {1, 2, . . . ,N } is the index for each UAV and A is
the available actions set for the ith UAV when it is located in
state S(i)t .
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FIGURE 5. An example of RL-based decision making process for 2 UAVs in a 3 × 3 regiona.

Figure 5 demonstrates an example of the learning proce-
dure for two UAVs based on the feedback reward, the taken
actions, and the states. UAV 1 changes its location based on
the taken action. UAV 2 stays at its location. These processes
bring a new state for UAV 1, based on the Down action,
it flies from state 4 to state 7. Also, UAV 2 keeps its previous
state at location 5. Based on the received throughput for both
the primary receiver and the emergency center as feedback,
the rewards are assigned to the UAVs. Algorithm 1 summa-
rizes the search algorithm to find the best primary region and
the UAV allocation by the emergency center, also it abstracts
the requiring steps for the Q-learning in the RL process for
all UAVs.

C. CONVERGENCE ANALYSIS OF THE RL ALGORITHM
Since the UAVs are independent, they have different Q-tables.
Let Q∗i (S, ai) denote the optimal Q-value for the ith UAV in
algorithm 1.
Theorem 1: The utility functions for the system which are

defined by formulas (1), (3), and (9) are bounded and finite.
Proof: Considering (3), terms |hS,Uj |

2 and |hUj,E |
2 depend

on the location of UAVs. Since, the emergency center and
the primary users are placed in a fix location and the gird
size is bounded for definite positions, then RSE (Multi-UAV)
is bounded for definite numbers. The same approach can be
used for RPU . As a result, both (1) and (3) are bounded. Also,
the reward function is defined based on β1, β2, and β3 which
are finite values.
Theorem 2: If the learning rate is bounded between 0 and

1 (0 < α ≤ 1) for all (S,A) ∈ S × A which requires all
states-actions to be observed for infinite times, then:

∞∑
i=1

α = ∞,

∞∑
i=1

α2 <∞ (11)

Proof: To prove Theorem 2, auxiliary results from
stochastic approximation are needed as provided in [52], [53].

Lemma 1: The Q-learning algorithm in algorithm 1 with
the update rule from (8) is converging to the optimalQ∗i (S, ai)
with probability one (w.p.1) if the utility function for the
system is bounded, the state and actions sets are finite, and
∞∑
i=1
α = ∞,

∞∑
i=1
α2 <∞ for 0 < α ≤ 1 [52], [54]:

lim
t→∞

Qt,i(S,A) = Q∗i (S, ai) (12)

where, t is the time step in each episode.
Table 1 compares the number of states and the Q-table

size for both methods of team learning [27] and our proposed
method in this paper for a sample size of 6× 6 with 2 agents.
Since, the HAP center assigns the task for UAVs, the algo-
rithm has one less action compared to [27]. Also, we assumed
that the whole grid size of 6× 6 is divided into 4 regions size
of 3 × 3, and each UAV operates in one region. The team
Q-learning approach needs more space size for the Q-table
since the size increases exponentially regarding the number
of drones; however, the proposed method requires less space
in each Q-table since there is only one UAV in each region as
a result to total number of states is equal to the summation of
all states.

TABLE 1. Comparison of the action and state space and the size of
Q-table between the proposed method and the team Q-learning
approach developed in [27] for a system model of a 6 × 6 grid.
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Algorithm 1 Region Assignment, UAV Allocation, and
Q-Learning for RL Framework
initialization:
Set initial parameters and conditions
Select the primary region by the emergency center
Allocate the operation regions for sensing UAVs by the
emergency center noting the region priorities
Decrease the energy after UAV allocation
Set all initial parameters for the RL
for all Runs do

Initial all Q-Tables, utility functions, actions, tasks,
and all arrays to zero
for all Episodes do

Set the location for the UAVs to the initial
Set the energy for the batteries to the initial
energy
if Variations in the environment (dynamicity
level) > τ then

re-initiate the controller process for the
UAVs and regions

end
for all t < Step Size in the Grid do

for all the UAVs do
Get the State from the updated location
if Random < ε then

Choose a random action
Update the location

else
Choose an action based on best
Q-value from the Q-table
Update the location

end
Update the energy after flight
Calculate the utilities and throughput
Update the energy after transmission
Calculate the reward
Update the Q-Table

end
end

end
end

V. SIMULATION RESULTS
In this section, we consider different scenarios for different
gird sizes and system conditions to evaluate the perfor-
mance of our proposed method. First, a pair of ground-based
transmitter-receiver as the primary users and an aerial-based
emergency center (e.g. an HAP) are located in random loca-
tions. The whole area of coverage is surfaced into L1 × L2
tiles. The drones are assumed to be located in arbitrary
locations at the beginning of the optimization round. They
can move in four directions of {Up ,Down ,Left ,Right} or
stay in the same location. The whole grid size is divided
into a pre-defined number of regions. hi,j defined the CSI
parameters between nodes i and j is calculated based on a

LoS model with a known propagation loss factor. We assume
that the loss factor in our scenario is−2. LoSmodel considers
the 3 dimensional Euclidean distance between the nodes. β1,
β2, and β3 (the rewards in (9)) are chosen arbitrary based on
the experiment in the simulations. Random values between
4000 and 5000 Jules are chosen as the initial battery value
for the UAVs. The transmission powers are chosen based on
PPT = 10mW andPUi = 20mW . Themobility consumption
rate (9) and the transmission consumption rate (ψ) in each
time slot are 10.0 J

Mobility and 0.5 J
transmission , respectively.

σ 2
= 1nW . RL parameters α, γ , and ε are chosen as

0.1, 0.3, and 0.1, respectively unless mentioned explicitly
otherwise. For the RL algorithm, we assume that the rate of
the exploration-exploitation is fixed meaning that the UAVs
with a constant probability (ε) choose the actions based on
the best action-state Q-values otherwise they do it randomly.

Since each UAV is located in a separate region, the state-
space is (R1 × R2), which R1 and R2 are the dimensions for
the region area. All regions have the same dimension during
the simulation unless the emergency center changes them
at the beginning of each run. The number of UAVs is 5 in all
iterations and episodes. The emergency center applies a sim-
ple search algorithm to find the best primary region and the
relay UAV. Also, it uses the bipartite graph matching to allo-
cate UAVs to the regions. The time complexity to find the best
primary region is O(M ), where M is the number of regions
and the time complexity for finding the best relay UAV is
O(N ), where N is the number of UAVs. Next, the emergency
center assigns the sensing UAVs to the high priority-regions
with the time complexity of O(N ) and utilizes the bipartite
graph matching. It matches the UAVs to the high-priority
regions with the time complexity of O((N − 1)2) ∼ O(N 2).
20 external iterations are considered to improve the accu-

racy of the simulation and avoid intolerance of the initial
values and a biased behavior. In each iteration, the UAVs run
40 episodes to fill the gaps of Q-values in their Q-tables. The
Q-tables are initialized with zeros and the final Q-values in
each Q-tables is the initialization for the next episode. The
number of steps in each episode is assigned based on the
experiment and the number of states in each region. Table 2
brings the parameters and timing values for all the executed
simulations. Timing values are calculated using a system
with AMD RYZEN 9 3900X CPU @ 3.8GHz and 64.0GB
RAM @ 3200MHz. Measured timing values are dedicated
to each episode and then summed up over all episodes and
finally over all iterations. Compared to the methods such as
team Q-learning which require one single learner with a huge
Q-table and state-action values, this method that employs
multi learners with no correlation has much lower time com-
plexity. We should note that the time complexity of the
RL-based algorithm is a function of the size of the gird within
each operation region. Therefore, the optimal size of the
regions and the number of grids inside each region are deter-
mined in a such a way to result in a manageable time to fill out
the Q-table for each region. The size of the Q-table is defined
based on the number of cells in each region and the number of
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TABLE 2. Simulation parameters and required times for the convergence with 5 UAVs and 5 movement actions.

FIGURE 6. Topology in 2D and 3D for 5 UAVs in a 64 × 64 grid size and 16 regions.

actions as (region_size)× (Number of actions). The Q-tables
for different regions are filled out in a parallel manner by
the assigned UAVs to these regions. Therefore, increasing
the number of regions does not increase the required time
to execute the overall mission. The required time for the
algorithm under several scenarios based on the grid size and
the number of regions is presented in Table 2. For instance,
let us consider the region size of 4 × 4 for two cases of grid
sizes of 16×16 and 64×64.While in these two cases, the size
of the grids is different, the number of states and the number
of actions are equal. As a result, the total simulation times for
both cases are almost the same. Therefore, we can keep the
grid size in a range to offer an acceptable time complexity
by selecting an optimal dimension for the grids as well as the
number of the regions.

The initial random locations for 5 UAVs and fixed loca-
tions for the primary users and the emergency center in a
constant altitude are shown in Figure 6. Figure 6a shows
the 3 dimensional topology for all UAVs with a random
initialization, and Figure 6b demonstrates the initial point but
in a Z plane. Finally, Figure 6c shows the 2D topology for
the UAV after the emergency center made decision about the
region assignments. Red, blue, and green nodes specify the
emergency, primary, and UAV users, respectively.

A. PART-1
In the first part of the simulation, we evaluated the perfor-
mance of the proposed method with 5 UAVs in a 81×81 grid

plane with 9 predefined regions. Each region has 27 cells in
length and 27 cells in width which means it covers an area
of 729 cells that is equal to the number of states for each UAV.

The sum utility for all UAVs is shown in Figure 7. In this
sample scenario, UAV [4] is the relay UAV and the rest of
them are the sensing UAVs. The summation throughput for
each episode is measured which is the accumulated rate for
6000 transmissions during each episode. Based on the plot
observation, the UAVs start learning the optimal locations
for transmission as the steps proceed. At the final episodes,

FIGURE 7. Summation throughput rate for all UAVs.
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there are more experienced state-action values in the Q-table
for each UAV, as a result, they converge faster to the best or
optimal location for maximizing the individual throughput.
Since the values of throughput depend also on the location of
the allocated regions, the plot shows the normalized rate for
UAVs to have better demonstration over the behavior.

Figure 8 demonstrates the accumulative reward during
each episode for 5 UAVs. As it is shown, the agents start the
learning and the exploring at lower episodes and because of
that, they gain more random rewards which can be negative
or positive. At the final episodes, they are using the updated
Q-values based on the reward and Q-value updating functions
in (9) and (7), respectively. Hence, it is more beneficial for the
UAVs to merge to the optimal locations based on the energy
consumption and the rate differential values between two
consecutive steps. Hence, they will earn more positive reward
compared to the initial episodes. Also, there is no correlation
between the UAVs and they follow the same reward function
for updating, as a result, they show the same behavior for the
accumulative reward.

FIGURE 8. The accumulative reward for all UAVs over all episodes.

We explicitly defined the energy consideration in the
reward function. Hence, the expectation is to have less mobil-
ity at the final episodes. Since the mobility costs lots of
energy, it brings negative reward for each UAV. The agents
learn during action-decisions to have only necessary move-
ments and those necessary moves will result in an optimal
location for higher throughput. Based on Figure 9, at the
beginning of the learning process, the Q-values are initial-
ized with zeros. Hence, there is no real difference between
the exploring and the exploiting and the agents have more
mobility to get experience with different cells in their region.
At the final episodes, when the Q-table is updated with recent
values, the UAVs know their best actions to take in order to
reach the optimal states. As a result, they are more stable for
the final episodes. At the early episodes, most UAVs took
around 2000 actions for mobility, while at the final episodes
this number is less than 500 which shows their intention to be
more stable.

FIGURE 9. Number of movements for all UAVs in each episode.

FIGURE 10. Number of successful transmissions for each UAV over all
episodes.

Figure 10 investigates the lifetime for all UAVs based on
the number of successful transmissions. If the battery energy
is drained completely, then the UAV is considered as a dead
node which cannot operate anymore. In this scenario, instead
of 6000 steps, the UAVs transmit or relay infinitely to find
the maximum number of transmission. Based on Figure 10,
at the early episodes, because of more movements, the UAVs
are more prone to higher energy consumption rates and at
the final episodes, they are more stable in their locations
and the only cost for energy is the transmission. Besides,
since the sensing network is borrowing the spectrum from the
primary network, the goal is to allocate a UAV which has the
longest lifetime to the primary network to utilize the leased
spectrum for the critical situation. Based on the emergency
center search algorithm, UAV [4] was the most suitable one
to relay and it has the best lifetime among all UAVs in the
network.

Figure 11 shows the energy consumption rate for all UAVs.
To measure the energy consumption rate, we considered
the initial energy, the energy at 75% of all steps in each
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TABLE 3. Comparison of the required times for convergence between the proposed method and the team-learning approach developed in [27] for a
network of 2 UAVs with 6 actions.

FIGURE 11. Energy consumption rate for all UAVs in each episode.

episode, and the lifetime of the agent in that episode. Based
on the figure, UAV [4] has the least energy consumption rate
among all UAVs since it performs the task as a relay for the
primary (terrestrial) network. The purpose of the searching
algorithm for the primary region was to allocate the longest
lifetime UAV to the primary network.

Unlike the exponential behavior in [27], the processing
time in this work is not increasing at the same pace because
of two reasons: first) there is no correlation between the
UAVs’ strategies and each UAV acts independently, actions
and rewards are unique for each UAV, the behavior of one
agent does not affect the other ones. Second) increasing the
whole grid size does not necessarily increase the processing
time since the processing time depends on the number of
regions and the regions size. For instance, based on Table. 2,
the region size of 4×4 in both grid sizes of 32×32 and 64×64
has the same total simulation time to fill up the Q-table. Using
the emergency center to allocate the task among the UAVs
reduces the converging time significantly. Table 3 shows the
convergence time for the teamQ-learning algorithm proposed
in [27]. This method works in a fully distributed manner. As a
result, training the Q-table requires more time compared to
our proposed hybrid method. For instance, it took 6 days to
fill the Q-table for 2 UAVs and 6 actions in a 10 × 10 grid.
In our model, it takes almost 3 hours to fill all Q values for
5 UAVs with 5 movement actions in a 81× 81 grid plane.

B. PART-2
In the second part of the simulation, we compared the perfor-
mance of the proposed algorithm with four other methods.
We considered 5 modes; mode[0] which is the proposed
method of this work that the emergency center considers the
priority for critical regions and allocates the UAVs to the
regions to prolong the lifetime of the network. The UAVs
also use the Q-learning algorithm to find the best cell in their
own region to have an optimal throughput rate. In mode[1],
the emergency center still considers prioritized regions for the
UAVs to have optimal throughput. However, the UAV alloca-
tion is random, the UAVs still utilize the RL to find the best
cell in the regions. In mode[2], both the regions assignment
and the UAV allocations are random; but the UAVs use the RL
algorithm in each region.Mode[3] is the opposite of mode[0],
the regions are chosen randomly not based on the priority, but
the emergency center allocates the UAVs wisely based on the
energy consumption rate to maximize the network lifetime.
The emergency center considers the prioritized regions and
allocates the UAVs to the regions in mode[4] based on the
two mentioned search algorithms in Section IV-A. However,
the mobility pattern for the UAVs is based on a predefined
random path.

Figure 12 demonstrates the summation utilities for 5 dif-
ferent modes. In cases 0 and 1, the optimal summation
throughput is derived when the emergency center considers
the critical region as a priority for the UAVs. The emergency
center also allocates the best UAVs for the sake of network
lifetime in case 0. However, the UAVs are chosen randomly
in case 1 which does not affect the throughput. On the other
hand, in cases 2 and 3, the throughput is decreased since
the regions are chosen randomly still the emergency center
allocated theUAVswisely based on the bipartite graphmatch-
ing. Obviously, case 4 with all random actions has the worst
performance.

Figure 13 shows the lifetime for all cases. Case 0, the pro-
posed method, has the longest lifetime in all episodes.
To define the lifetime, we consider the relay UAV lifetime,
and we assumed that after the battery depletion, the sensing
UAVs do not have access to the spectrum anymore. Based
on this observation, cases 0 and 3 where the emergency
center chooses the optimal UAVs, the lifetime is significantly
enhanced compared to other cases. Moreover, choosing the
regions also affects the lifetime. It shows that the emergency
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FIGURE 12. Throughput rate comparison in different conditions,
Modes[0-4].

FIGURE 13. Lifetime comparison in different conditions, Modes[0-4].

FIGURE 14. Comparison of energy consumption rate in different
conditions, Modes[0-4].

center’s decisions have crucial results on the lifetime rather
than the throughput.

For the energy consumption rate, we considered each
UAV’s initial energy, the energy at the 75% steps in each
episode, and the lifetime of the relay UAV. The average
is performed over all the UAVs and the runs. Figure 14
shows the proposed method (case 0) has the least significant
energy consumption rates for all the UAVs in the network.
Case 3 with the random regions and the allocated UAVs
follows case 0. Case 1 with the random UAVs and the regions
selected by the emergency center is in the third rank and
case 2 with the random regions, the random UAV allocation,
and the RL algorithm is the fourth one. Case 4 where both
the UAVs and the regions are allocated by the emergency
center but with a predefined trajectory has the most energy
consumption rate.

VI. CONCLUSION
In this paper, a disaster relief situation is considered as a
sample scenario where a group of UAVs observes critical
information such as wildfire situations for an emergency
center. The UAV network during such critical missions may
require additional spare spectrum. To address this demand,
we developed a spectrum sharing model where one UAV
acts as a relay and forwards data for a terrestrial network in
exchange for the required spectrum and the rest of the UAVs
utilize this spectrum to transmit the sensed information. The
emergency center determines the regions for the primary and
secondary networks to maximize the throughput and it allo-
cates the UAVs into the chosen regions based on a predefined
grid plane to maximize the network lifetime and reduce the
energy consumption. A reinforcement learning approach is
used for all the UAVs to find the best cell in each region
without any prior information of the environment. The simu-
lation results show that after a certain amount of iterations and
episodes, the UAVs converge to the optimal state with a fewer
number of actions. We also compared the proposed method
with other random assignments and allocations. For larger
gird size planes, it is possible to consider the approximate
location of the grid plane for hazardous and dangerous areas
and perform offline learning to save the time and come up
with a predefinedQ-table. Then, the UAVs can act completely
greedy based on the Q-table to travel to the best location
without any extra action.
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